Mirascope
Connect it to ollama¶
# set your OPENAI_API_KEY in your .env
from openai.types.chat import ChatCompletionMessageParam
from mirascope.openai import OpenAICall
class Librarian(OpenAICall):
prompt_template = """
SYSTEM: You are the world's greatest librarian.
MESSAGES: {history}
USER: {question}
"""
question: str
history: list[ChatCompletionMessageParam] = []
librarian = Librarian(question="", history=[])
while True:
librarian.question = input("(User): ")
response = librarian.call()
librarian.history += [
{"role": "user", "content": librarian.question},
{"role": "assistant", "content": response.content},
]
print(f"(Assistant): {response.content}")
# connecting ollama/llama3
from openai.types.chat import ChatCompletionMessageParam
from mirascope.openai import OpenAICall, OpenAICallParams
class Librarian(OpenAICall):
prompt_template = """
SYSTEM: You are the world's greatest librarian.
MESSAGES: {history}
USER: {question}
"""
question: str
history: list[ChatCompletionMessageParam] = []
api_key = "ollama"
base_url = "http://localhost:11434/v1/"
call_params = OpenAICallParams(model="llama3")
librarian = Librarian(question="", history=[])
while True:
librarian.question = input("(User): ")
response = librarian.call()
librarian.history += [
{"role": "user", "content": librarian.question},
{"role": "assistant", "content": response.content},
]
print(f"(Assistant): {response.content}")
Page last modified: 2024-11-13 14:01:29